

POMPE DOSATRICI SERIE DLX-CC/M E DLXB-CC/M

NORME DI INSTALLAZIONE, USO E MANUTENZIONE

DLX-CC/M AND DLXB-CC/M SERIES METERING PUMPS
OPERATING INSTRUCTIONS AND MAINTENANCE

ETATRON D.S.

Sede - Head office

ROME

Via Catania, 4 00040 Pavona di Albano Laziale (RM) ITALY

Tel. +39 06 93 49 891 (r.a.) - Fax +39 06 93 43 924

Internet: http://www.etatronds.com

e-mail: info@etatronds.com

Filiali - Branch offices

MILANO

Via Ghisalba, 13 20021 Ospiate di Bollate (MI) ITALY Tel. 02 35 04 588 Fax 02 35 05 421

ENGLAND

ETATRON (U.K.): Chemical Dosing Pumps & Equipment Moor Farm House East Road Sleaford Lincolnshire, NG34 8SP ENGLAND Phone +44 1529 300567 Fax +44 1529 300503

IRELAND

ETATRON (Ireland) Limited
The Pike
Lisavaird Clonakilty Co.Cork
Republic of Ireland
Phone: +353 1883 4466 Fax: + 353 1883 4468

CANADA
 ETATRON D.S. Inc
 #203-17665 - 66A Ave
 Surrey BC V3S 2 A7 Canada
 Phone +1 604 576 8539 - +1 604 574 1401

Fax +1 604 576 0924

ASIA ETATRON D.S. (Asia-Pacific) PTE Ltd No. 7, Kaki Bukit Road 2 - #03-01 Great Pacific Warehouse Singapore 417840 Phone +65 67437959 Fax +65 67430397

RUSSIA OOO ETATRON 3-rd Mytishenskaya str., 16/2 129626, Moscow, RUSSIA Phone/Fax: +7 495 7871459 www.etatron.ru

UKRAINA 000 ETATRON Soborna Street, 446 Rivne, Rivne region 33024 Phone: +380362610681/82 Fax: +380362630801/622033 etatron@ukrwest.net

(IT) DIRETTIVA "RAEE" 2002/96/CE E SUCCESSIVA MODIFICA 2003/108/CE SUI RIFIUTI DI APPARECCHIATURE ELETTRICHE ED ELETTRONICHE

Il simbolo sotto riportato indica che il prodotto non può essere smaltito come normale rifiuto urbano.

Le Apparecchiature Elettriche ed Elettroniche (AEE) possono contenere materiali nocivi per l'ambiente e la salute e pertanto devono essere oggetto di raccolta differenziata: smaltite quindi presso apposite discariche o riconsegnate al distributore a fronte dell'acquisto di una nuova, di tipo equivalente o facente le stesse funzioni.

La normativa sopracitata, alla quale rimandiamo per ulteriori particolari e approfondimenti, prevede sanzioni per lo smaltimento abusivo di detti rifiuti.

(UK) WASTE OF ELECTRICAL AND ELECTRONIC EQUIPMENT DIRECTIVE (WEEE, RAEE in Italy) 2002/96/EC AND SUBSEQUENT AMENDMENT 2003/108/EC

The marking shown below indicates that the product cannot be disposed of as part of normal household waste. Electrical and Electronic Equipment (EEE) can contain materials harmful to health and the environment, and therefore is subject to separate waste collection: it must be disposed of at appropriate waste collection points or returned to the distributor against purchase of new equipment of similar type or having the same functions.

The directive mentioned above, to which make reference for further details, provides for punitive actions in case of illegal disposal of such waste.

29-32

INDICE	
1.0 - NORME GENERALI 1.1 - AVVERTENZE 1.2 - TRASPORTO E MOVIMENTAZIONE 1.3 - USO PREVISTO DELLA POMPA 1.4 - RISCHI 1.5 - DOSAGGIO DI LIQUIDI NOCIVI E/O TOSSICI 1.6 - MONTAGGIO E SMONTAGGIO DELLA POMPA	pag. 2 2 2 2 2 3 3
2.0 -POMPE DOSATRICI A MICROCONTROLLORE SERIE DLX E DLX/B 2.1 - PRINCIPIO DI FUNZIONAMENTO 2.2 - CARATTERISTICHE TECNICHE 2.3 - MATERIALI A CONTATTO CON L'ADDITIVO	4 4 4 5
3.0 - INSTALLAZIONE 3.1 - SCHEMA DI MONTAGGIO VALVOLA DI INIEZIONE 3.2 - CABLAGGI E FUNZIONI DEI CONNETTORI DI USCITA 3.3 - REGOLAZIONE DELLA CORSA 4.0 - MANUTENZIONE	6 7 8 8 9
5.0 - NORME PER L'ADDITIVAZIONE CON ACIDO SOLFORICO	9
6.0 - POMPA DOSATRICE A MICROCONTROLLORE SERIE DLX E DLX/B CC/M 6.1 - COMANDI 6.2 - SCHEMA DI IMPIANTO TIPICO 6.3 - CORREDO 6.4 - CONTROLLO DI LIVELLO 6.5 - PROCEDURA DI TARATURA 6.6 - IMPOSTAZIONE PARAMETRI 6.7 - COLLEGAMENTO DEGLI ACCESSORI AI CONNETTORI D' INGRESSO/USCITA	10 10 10 10 11 11 11 12 A
7.0 - INTERVENTI IN CASO DI GUASTI COMUNI ALLE POMPE SERIE DLX E DLX/B 7.1 - GUASTI MECCANICI 7.2 - GUASTI ELETTRICI	13 13 13

VISTE ESPLOSE

1.0 - NORME GENERALI

1.1 - AVVERTENZE

Leggere attentamente le avvertenze sottoelencate in quanto forniscono importanti indicazioni riguardanti la sicurezza di installazione, d'uso e manutenzione.

- Conservare con cura questo manuale per ogni ulteriore consultazione.
- Apparecchio conforme alla direttiva n. 89/336/CEE "compatibilità elettromagnetica" e alla n. 73/23/CEE "direttiva di bassa tensione" con la relativa modifica n. 93/68/CEE.

N.B.: La pompa è costruita a regola d'arte. La sua durata e affidabilità elettrica e meccanica saranno più efficienti se essa verrà usata correttamente e verrà fatta una regolare manutenzione.

ATTENZIONE: Qualunque intervento o riparazione all'interno dell'apparecchiatura deve essere effettuata da personale qualificato ed autorizzato. Si declina ogni responsabilità dovuta all'inosservanza di tale regola.

GARANZIA: 1 anno (sono escluse le parti di normale usura e cioè: valvole, raccordi, ghiere fissatubo, tubetti, filtro e valvola d'iniezione). L'uso improprio dell'apparecchiatura fa decadere detta garanzia. La garanzia s'intende franco fabbrica o distributori autorizzati.

1.2 - TRASPORTO E MOVIMENTAZIONE

La pompa deve essere trasportata in ogni caso in posizione verticale e mai orizzontale. La spedizione con qualsiasi mezzo eseguita, anche se franco domicilio dell'acquirente o destinatario, si intende effettuata a rischio e pericolo dell'acquirente. Il reclamo per materiali mancanti dovrà essere effettuato entro 10 giorni dall'arrivo delle merci. Mentre per il materiale difettoso entro il 30° giorno dalla ricezione. L'eventuale restituzione delle pompe deve essere preventivamente concordata con il personale autorizzato o con il distributore autorizzato.

1.3 - USO PREVISTO DELLA POMPA

La pompa dovrà essere destinata solo all'uso per la quale è stata espressamente costruita e cioè per dosare liquidi. Ogni altro uso è da considerarsi improprio e quindi pericoloso. Non è previsto l'uso della pompa per quelle applicazioni che non sono previste in fase di progetto. Per ulteriori chiarimenti il cliente è tenuto a contattare i nostri uffici dove riceverà informazioni sul tipo di pompa in suo possesso ed il relativo corretto uso. Il costruttore non può essere considerato responsabile per eventuali danni derivanti da usi impropri, erronei ed irragionevoli.

1.4 - RISCHI

- Dopo aver tolto l'imballaggio assicurarsi dell'integrità della pompa, in caso di dubbio non utilizzare la pompa e rivolgersi a personale qualificato. Gli elementi dell'imballaggio (quali sacchetti di plastica, polistirolo, ecc.) non devono essere lasciati alla portata dei bambini in quanto potenziali fonti di pericolo.
- Prima di collegare la pompa accertarsi che i dati di targa siano rispondenti a quelli della rete di distribuzione elettrica. I dati di targa sono esposti sulla targhetta adesiva posta sulla pompa
- L'esecuzione dell'impianto elettrico deve essere conforme alle norme che definiscono la regola dell'arte nel paese dove è realizzato l'impianto.
- L'uso di un qualsiasi apparecchio elettrico comporta l'osservanza di alcune regole fondamentali. In particolare:
- non toccare l'apparecchio con mani o piedi bagnati o umidi;
- non manovrare la pompa a piedi nudi (es. impianti di piscina)
- non lasciare esposto l'apparecchio ad agenti atmosferici (pioggia, sole ecc.)
- non permettere che la pompa sia usata dai bambini o da incapaci senza sorveglianza.
- In caso di guasto e/o cattivo funzionamento della pompa, spegnerla e non manometterla. Per l'eventuale riparazione rivolgersi ai nostri centri di assistenza e richiedere l'utilizzazione di ricambi originali. Il mancato rispetto di guanto sopra riportato può compromettere la sicurezza della pompa.
- Allorché si decida di non utilizzare più una pompa installata si raccomanda di renderla inoperante scollegandola dalla rete di alimentazione.

Prima di effettuare qualsiasi operazione di manutenzione o pulizia sulla pompa dosatrice occorre:

- Assicurarsi che la stessa sia disattivata elettricamente (entrambe le polarità) staccando i conduttori dai punti di contatto della rete attraverso l'apertura dell'interruttore onnipolare con distanza minima tra i contatti di mm 3 (Fig. 4).
- Eliminare nel modo più adeguato, (ponendo la massima attenzione), la pressione esistente nel corpo pompa e nel tubetto di mandata.
- Eliminare dal corpo pompa tutto il liquido presente, smontando e rimontando il corpo pompa utilizzando le quattro viti di fissaggio (Fig. 12).

In caso di eventuali perdite nell'apparato idraulico della pompa (rottura dell'OR di tenuta, delle valvole, dei tubi), bisogna arrestare il funzionamento della pompa depressurizzare la tubazione di mandata e quindi procedere con le operazioni di manutenzione utilizzando adeguate misure di sicurezza (guanti, occhiali, tute, ecc.).

1.5 - DOSAGGIO DI LIQUIDI NOCIVI E/O TOSSICI

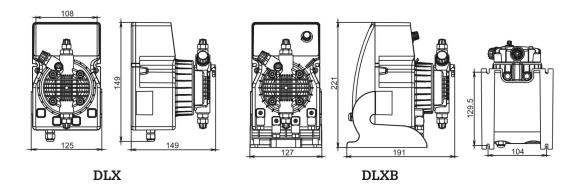
Per evitare danni a persone o cose derivanti dal contatto di liquidi nocivi o dall'aspirazione di vapori tossici, oltre al rispetto delle istruzioni contenute in questo libretto occorre tener ben presenti le seguenti norme:

- Operare secondo quanto raccomandato dal produttore del liquido da utilizzare.
- Controllare che la parte idraulica della pompa non presenti danneggiamenti o rotture ed utilizzare la pompa solo se in perfette condizioni.
- Utilizzare tubetti adatti al liquido ed alle condizioni operative dell'impianto, inserendoli, eventualmente, all'interno di tubi di protezione in P.V.C.
- Prima di disattivare la pompa dosatrice, occorre neutralizzare la parte idraulica con opportuno reagente.

1.6 - MONTAGGIO E SMONTAGGIO DELLA POMPA

1.6.1 - MONTAGGIO

Tutte le pompe dosatrici da noi prodotte vengono normalmente fornite già assemblate. Per maggiore chiarezza di esposizione si può consultare l'allegato in fondo al manuale dove sono riportati nei disegni in esploso delle pompe, tutti i particolari con relativa nomenclatura, in modo tale da poter avere un quadro completo dei componenti della pompa. Tali disegni sono comunque indispensabili nel caso si dovesse procedere al riconoscimento di parti mal funzionanti o difettose. Altri disegni, riguardanti le parti idrauliche (testa della pompa e valvole) vengono riportati per gli stessi scopi sempre nell'allegato.


1.6.2 - SMONTAGGIO

Per l'eventuale smontaggio della pompa o comunque prima di effettuare interventi sulla stessa occorre:

- 1. Assicurarsi che la stessa sia disattivata elettricamente (entrambe le polarità) staccando i conduttori dai punti di contatto della rete attraverso l'apertura dell'interruttore onnipolare con distanza minima tra i contatti di mm 3 (Fig. 4).
- 2. Eliminare nel modo più adeguato, (ponendo la massima attenzione), la pressione esistente nel corpo pompa e nel tubetto di mandata.
- 3. Eliminare dal corpo pompa tutto il liquido presente, smontando e rimontando il corpo pompa utilizzando le quattro viti di fissaggio (Fig. 12).

Per quest'ultimo punto si richiede particolare attenzione, per cui consigliamo di consultare i disegni in allegato e il capitolo **1.4** "RISCHI" prima di iniziare qualsiasi operazione.

VISTE E DIMENSIONI (Fig. 1)

2.0 - POMPE DOSATRICI SERIE DLX E DLX/B

2.1 - PRINCIPIO DI FUNZIONAMENTO

II funzionamento della pompa dosatrice è assicurato da una membrana in teflon montata sul pistone di un elettromagnete. Quando il pistone dell'elettromagnete viene attratto, si produce una pressione nel corpo pompa con una espulsione di liquido dalla valvola di mandata. Finito l'impulso elettrico una molla riporta il pistone nella posizione iniziale con un richiamo di liquido attraverso la valvola di aspirazione. Data la semplicità di funzionamento la pompa non ha bisogno di lubrificazione e la manutenzione è ridotta quasi a zero. I materiali utilizzati per la costruzione della pompa la rendono adatta anche per l'uso di liquidi particolarmente aggressivi. La pompa dosatrice è stata studiata per portate che vanno da 1 a 20 l/h e pressioni da 0 a 15 bar (dipende dal tipo di pompa).

2.2 - CARATTERISTICHE TECNICHE

- Apparecchiature prodotte a norma (€
- Condizioni ambientali: protezione IP65, altitudine fino a 2000m, temperatura ambiente da 5°C fino a 40°C, umidità relativa massima 80% fino ad un massimo di 31°C(decresce linearmente fino a ridursi al 50% a 40°C).
- Classificazione rispetto alla protezione contro i contatti indiretti: CLASSE I (l'apparecchiatura è fornita di conduttore di protezione).
- Protezione IP 65.
- Cassa in materiale plastico antiacido
- Pannello comandi protetto con pellicola adesiva in poliestere resistente agli agenti atmosferici e ai raggi UV.
- Alimentazione elettrica standard (sono permesse fluttuazioni massime del ±10%):
 230 V a.c. 50 Hz monofase.
- Sono disponibili a richiesta le seguenti alimentazioni (sono permesse fluttuazioni massime del ±10%):
 240 V a.c. 50-60 Hz monofase

110 V a.c. 50-60 Hz monofase.

Connessioni per collegamento con sonda di livello e ingresso mA.

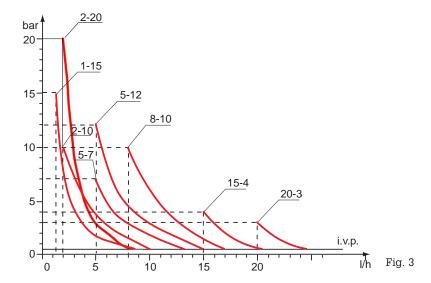
A richiesta: regolazione meccanica della corsa, per un accurato dosaggio del volume di iniezione (solo serie DLXB).

Funzioni operative:

Manuale La pompa dosa in maniera automatica tra zero e 120 impulsi/minuto.

mA La pompa dosa in maniera proporzionale ad un segnale in corrente ricevuto nel relativo ingresso mA.

0 - 20 mA. 0 - 120 impulsi/minuto


2.3 - MATERIALI A CONTATTO CON L'ADDITIVO

- 1 DIAFRAMMA: PTFE
- 2 CORPO POMPA: Polipropilene; a richiesta: PVC, Acciaio Inox 316, PTFE, PVDF
- 3 RACCORDI: Polipropilene
- 4 FILTRO: Polipropilene
- 5 RACCORDO INIEZIONE: Polipropilene
- 6 TUBO ASPIRAZIONE: PVC Cristal flessibile
- 7 TUBO MANDATA: Polietilene
- 8 VALVOLE A LABBRO standard.: FPM (Viton®) (a richiesta in silicone, PDM e NBR) a richiesta: VALVOLE A SFERA (acciaio INOX 316, vetro PYREX con o senza molla di ritorno), VALVOLE KALREZ
- 9 TENUTE: FPM (Viton®), su richiesta EPDM (Dutral®), NBR, Silicone (solo per valvole a sfera).

TABELLA RIASSUNTIVA DELLE PRINCIPALI CARATTERISTICHE

Tipo Type	Portata max Max flow	Pressione max Max press	Max imp./min. Max imp./min.	Dosaggio per imp. Output per stroke	Corsa Stroke	Altez. aspiraz. Suction height	Aliment. elettr. standard Standard power supply	Potenza ass. Power consum.	Corrente ass. Current consum.	Peso netto Net weight
	l/h	bar		ml	mm	m	Volts - Hz	Watts	Ampere	kg
1-15	1	15	120	0.14	0.80	2.0	230 V 50 - 60 Hz	37	0.16	2.3
2-10	2	10	120	0.28	0.80	2.0	230 V 50 - 60 Hz	37	0.16	2.3
5-7	5	7	120	0.70	1.00	2.0	230 V 50 - 60 Hz	37	0.16	2.3
5-12	5	12	120	0,70	1.00	2.0	230 V 50 - 60 Hz	58	0.25	2.9
8-10	8	10	120	1.11	1.40	2.0	230 V 50 - 60 Hz	58	0.25	2.9
15-4	15	4	120	2.08	2.20	2.0	230 V 50 - 60 Hz	58	0.25	2.9
20-3	20	3	120	2.60	2.20	2.0	230 V 50 - 60 Hz	58	0.25	2.9
2-20	2	20	120	0.28	1.00	2.0	230 V 50 - 60 Hz	58	0.25	2.9

Fig. 2

I diagrammi della fig. 3 indicano le variazioni di portata massima delle pompe dosatrici al variare della pressione nell'impianto da trattare, in tali diagrammi sono considerate anche le perdite di carico dovute alla valvola di iniezione I.V.P.

Per esigenze di produzione le caratteristiche tecniche delle nostre apparecchiature possono oscillare con una tolleranza del 5%, da tener presente nella scelta del tipo di pompa.

- a.- Installare la pompa lontana da fonti di calore in luogo asciutto ad una temperatura ambiente massima di 40 ° C, mentre la temperatura minima di funzionamento dipende dal liquido da dosare che deve rimanere sempre allo stato fluido.
- b.- Rispettare le norme in vigore nei diversi paesi per quanto riguarda l'installazione elettrica (Fig. 4). Se il cavo di alimentazione è privo di spina, l'apparecchiatura deve essere collegata alla rete di alimentazione tramite un interruttore onnipolare sezionatore avente una distanza minima tra i contatti di mm. 3. Prima di accedere ai dispositivi di collegamento, tutti i circuiti di alimentazione debbono essere interrotti.

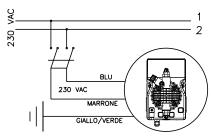


Fig. 4

c.- Ubicare la pompa come in figura 5 tenendo presente che essa può essere fissata sia sotto che sopra il livello del liquido da dosare entro il limite massimo di 2 metri. Il punto di iniezione deve essere collocato sempre più in alto del liquido da iniettare.

Se l'impianto da trattare lavora alla pressione atmosferica (additivazione a scarico libero) ed il serbatoio dell'additivo deve essere assolutamente posizionato più in alto del punto di iniezione (Fig. 6), controllare periodicamente la funzionalità della valvola di iniezione, in quanto la sua eccessiva usura potrebbe portare all'immissione dell'additivo nell'impianto per caduta (anche ad apparecchiatura ferma). Se il problema dovesse permanere, inserire una **valvola di contropressione C** opportunamente tarata tra la pompa dosatrice ed il punto di iniezione (Fig. 6). Per liquidi che emanano esalazioni aggressive, non installare la pompa sopra al serbatoio a meno che tale serbatoio risulti chiuso ermeticamente.

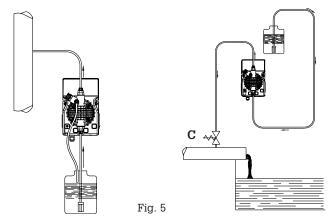


Fig. 6

d.- Il raccordo di mandata rimarrà sempre nella parte superiore della pompa da cui partirà il tubetto che va all'impianto da trattare. Il raccordo di aspirazione di conseguenza risulterà sempre nella parte inferiore della pompa, dove verrà montato il tubetto con il filtro che va al contenitore del liquido da dosare.

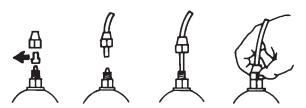
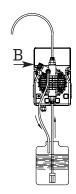



Fig. 7

e.- Sfilare la due capsule di protezione dai raccordi, inserire fino in fondo i tubetti sui relativi attacchi conici e bloccarli con le apposite ghiere di fissaggio (Fig. 7).

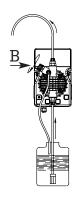


Fig. 8

Nel caso in cui per qualsiasi motivo la pompa dovesse essere tolta dall'impianto, si consiglia di riutilizzare le capsule di protezione, onde evitare indebite fuoriuscite di liquido dal corpo pompa. Prima di fissare il tubetto di mandata all'impianto, adescare la pompa dosatrice come da sequenza in Fig. 8. Nell'installare il tubetto di mandata assicurarsi che questo per effetto degli impulsi della pompa non urti contro corpi rigidi. In caso di difficoltà nell'innescare la pompa, aspirare dal raccordo di mandata con una normale siringa e con la pompa il funzione, fino a che non si vedrà salire il liquido nella siringa o nel tubetto di mandata. Per il collegamento raccordo di mandata-siringa, usare uno spezzone di tubo di aspirazione. Nel caso la pompa sia attrezzata con la valvola di spurgo, mantenere la valvola di spurgo B aperta fino a quando sarà fuoriuscita tutta l'aria contenuta nel corpo pompa.

- f. Evitare curve inutili sia sul tubo di mandata che su quello di aspirazione.
- g. Applicare sulla condotta dell'impianto da trattare, nel punto più idoneo per effettuare l'iniezione del prodotto da dosare, un raccordo da 3/8" gas femmina. Tale raccordo è escluso dalla fornitura. Avvitare la valvola di iniezione nel raccordo utilizzando come guarnizione del Teflon Fig. 9. Connettere il tubetto all'attacco conico della valvola d'iniezione e bloccarlo con l'apposita ghiera G. La valvola di iniezione è anche valvola di non ritorno.

N.B. L'anello di tenuta D non deve essere tolto.

3.1 - SCHEMA DI MONTAGGIO VALVOLA DI INIEZIONE Fig. 9

- A Impianto da trattare
- C Valvola di iniezione
- M Attacco conico per tubetto
- N Raccordo 3/8" gas femmina
- **G** Ghiera fissatubo
- T Tubo polietilene
- D Anello di tenuta

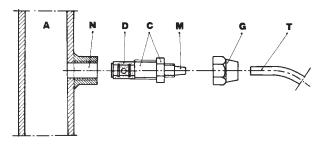
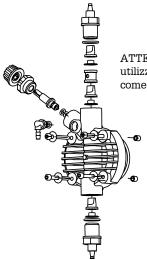


Fig. 9

3.2 - CABLAGGI E FUNZIONI DEI CONNETTORI DI USCITA

Cablaggio del connettore femmina	Informazioni tecniche e funzioni
Alla sonda di livello POS. 2	Connessione della sonda di livello Configurazione utilizzata : Pin 1 = Non collegato " 2 = Non collegato " 3 = Filo sonda di livello " 4 = Filo sonda di livello
Ingresso segnale in mA POS. 3	Connessione all'ingresso in mA Configurazione utilizzata: Pin 1 = Non collegato " 2 = Non collegato " 3 = Filo (+) segnale in mA " 4 = Filo (-) segnale in mA


3.3 - REGOLAZIONE DELLA CORSA - (su richiesta solo DLXB)

- premere la manopola (1) e girarla mantenendola premuta fino a raggiungere la percentuale di corsa desiderata.

4.0 - MANUTENZIONE

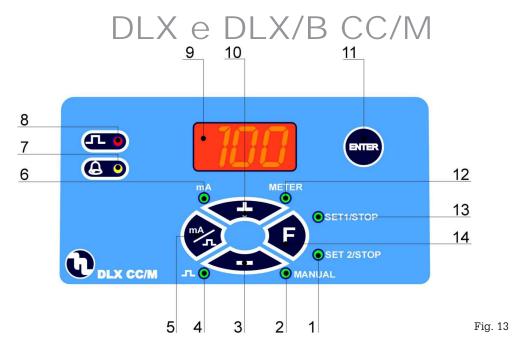
- Controllare periodicamente il livello del serbatoio contenente la soluzione da dosare, onde evitare che la
 pompa funzioni a vuoto; anche se in questo caso l'apparecchiatura non subisce alcun danno, si consiglia
 comunque questo controllo per evitare danni derivanti dalla mancanza di additivo nell'impianto.
- 2. Controllare almeno ogni 6 mesi il funzionamento della pompa, la tenuta delle viti e delle guarnizioni, per liquidi particolarmente aggressivi effettuare controlli anche più frequenti, controllare in particolare la concentrazione dell'additivo nell'impianto; una riduzione di tale concentrazione potrebbe essere determinata dalla usura delle valvole (che in tal caso vanno sostituite facendo attenzione nel rimontarle come in Fig. 12) o dall'intasamento del filtro che va pulito come al successivo punto 3.

ATTENZIONE: per il serraggio delle quattro viti utilizzare un giravite dinamometrico, impostando come forza di serraggio $1,8N \times m$.

Fig. 12

3. Il Produttore consiglia di pulire periodicamente la parte idraulica (valvole e filtro). Non è possibile stabilire l'intervallo di tempo entro il quale effettuare tale pulizia perché dipende dal tipo di applicazione, e nemmeno quale reagente utilizzare perché dipende dall'additivo usato.

Premesso ciò possiamo suggerire come intervenire se la pompa lavora con ipoclorito di sodio (caso più frequente):


- a. Assicurarsi che la stessa sia disattivata elettricamente (entrambe le polarità) staccando i conduttori dai punti di contatto della rete attraverso un interruttore onnipolare con distanza minima tra i contatti di mm 3.
- **b.** disconnettere il tubetto di mandata dall'impianto
- c. togliere il tubetto di aspirazione (con filtro) dal serbatoio ed immergerlo in acqua pulita
- d. alimentare la pompa dosatrice e farla lavorare con acqua 5÷10 minuti
- e. con la pompa disinserita immergere il filtro in una soluzione di acido cloridrico ed attendere che l'acido termini la sua azione di pulizia
- f. alimentare di nuovo la pompa facendola lavorare con acido cloridrico per 5 minuti realizzando un circolo chiuso con aspirazione e mandata immersi nello stesso contenitore
- g. ripetere l'operazione con acqua
- h. collegare di nuovo la pompa dosatrice all'impianto.

5.0 - NORME PER L'ADDITIVAZIONE CON ACIDO SOLFORICO (MAX 50%)

In questo caso è indispensabile tener presente quanto seque:

- 1. sostituire il tubetto cristal di aspirazione con tubetto in politene (mandata).
- 2. togliere preventivamente dal corpo pompa tutta l'acqua presente (se questa si miscela con l'acido solforico genera una forte quantità di gas con conseguente surriscaldamento della zona interessata arrecando danni alle valvole ed al corpo pompa).

Per effettuare questa operazione, se l'apparecchiatura non è fissata all'impianto si può farla pulsare per pochi secondi (15-30) tenendola capovolta e senza tubetti collegati ai raccordi, se ciò è impossibile smontare e rimontare il corpo pompa (Fig. 12), utilizzando le quattro viti di fissaggio.

6.0 - POMPA DOSATRICE A MICROCONTROLLORE SERIE DLX e DLX/B CC/M

La pompa DLX CC/M è un'apparecchiatura controllata da un moderno microcontrollore che permette una gestione capillare e dettagliata del segnale in corrente applicato. L'operatore ha la possibilità di impostare il modo di intervento della pompa dosatrice in funzione delle più diverse esigenze dell'impianto.

6.1 - COMANDI (Fig. 13)

- 1 LED "verde" funzione SET POINT 2/stand by
- 2 LED "verde" funzione MANUALE
- 3 Pulsante riduzione valori
- 4 LED "verde" segnalazione iniezioni/minuto
- 5 Pulsante selezione tipo di visualizzazione (mA/pulse)

6 - LED "verde" segnalazione corrente mA in ingresso

- 7 LED "giallo" allarme livello
- 8 LED "rosso" segnalazione impulsi
- 9 Display 7 segmenti
- 10 Pulsante incremento valori
- 11 Pulsante conferma valori
- 12 LED "verde" funzione MISURA
- 13 LED "verde" funzione SET POINT 1/stand by
- 14 Pulsante selezione funzioni

6.2 - SCHEMA DI IMPIANTO TIPICO (Fig. 14)

- A Raccordo di iniezione
- B Presa di alimentazione elettrica
- C Filtro
- D Sonda di livello
- I Serbatoio con additivo
- S Serbatoio impianto

6.3 - CORREDO

- n. 1 tubetto aspirazione in PVC tipo cristal trasparente flessibile di m. 2;
- n. 1 tubetto di mandata in polietilene di m. 2 semirigido bianco;
- n. 1 valvola di iniezione 3/8" BSP m;
- n. 1 filtro di fondo;
- n. 1 set di istruzioni.

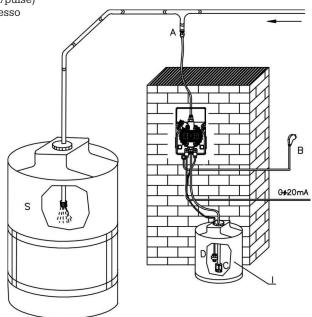


Fig. 14

6.4 - CONTROLLO DI LIVELLO (SU RICHIESTA)

Se la pompa dosatrice è predisposta per il controllo di livello (sonda a galleggiante non compresa nella fornitura). Venendo a mancare l'additivo nel contenitore, sul display appare la sigla "FAO", la pompa non effettua più iniezioni ed interviene una segnalazione ottica ed acustica. L'intervento del controllo di livello è ritardato di 5 secondi al fine di evitare incertezze dovute al livello dell'additivo.

6.5 - PROCEDURA DI TARATURA

All'accensione la pompa si avvia automaticamente sulla funzione "Meter", sul display appare l'indicazione della frequenza espressa in impulsi/minuto (0 quando non è collegato il trasmettitore di corrente mA).

Premendo il tasto "mA pulse" (5) è possibile verificare sul display il valore del segnale in mA in ingresso sul connettore della pompa. Ripremendo lo stesso pulsante ritorna visualizzata la frequenza di iniezioni corrispondente. La funzione "Manual" è utilizzabile esclusivamente nella fase di adescamento della pompa. Al fine di evitare errori di impostazione durante il funzionamento dell'impianto, la pompa dosatrice è programmata per ritornare ad ogni riaccensione, sulla funzione "Meter".

6.6 - IMPOSTAZIONE PARAMETRI (Fig. 13)

■ Funzione "Manual"

La funzione "Manual" consente di stabilire la frequenza di iniezioni più adatta alla fase di adescamento; per l'impostazione, dopo aver attivato la pompa (interruttore 1), operare come seque:

- A. Premere il tasto F (14) sul pannello comandi e attivare la funzione "Manual" (accensione del LED 2 relativo);
- B. Selezionare tramite i tasti 10 (per l'incremento) e 3 (per la riduzione), il numero di iniezioni/minuto desiderati per la fase di adescamento (in questa fase si consiglia di operare ad un numero di iniezioni pari al 75% della frequenza massima).
- C. Attendere l'adescamento della pompa.

■ Funzione "Set 1"

La funzione "Set 1" consente di stabilire il valore di corrente in ingresso a cui si desidera la portata minima, nonchè la frequenza delle iniezioni corrispondente. Per l'impostazione dei parametri, dopo aver attivato la pompa, operare nel seguente modo:

- A. Premere il pulsante 14 fino all'accensione del LED "Set 1" (13), il display automaticamente visualizzerà la frequenza delle iniezioni precedentemente impostata (alla prima programmazione verrà visualizzata la frequenza memorizzata in sede di produzione);
- B. Premere i tasti 3 e 10 per impostare la frequenza di iniezioni (imp/min) corrispondenti alla portata minima desiderata (se nulla impostare 000).
- C. Premere il tasto 5 (accensione del LED 6 "mA").
- D. Tramite i tasti 10 (incremento) e 3 (riduzione), impostare il valore del segnale in ingresso, espresso in mA, a cui si desidera avere la portata minima.

Confermare i dati con il tasto di invio (11) se si è conclusa la programmazione, se invece si vogliono modificare anche i parametri di gestione della portata massima la pressione del tasto 14 porterà la pompa automaticamente in modalità di "Set 2".

■ Funzione "Set 2"

La funzione "Set 2" consente di stabilire il valore di corrente in ingresso a cui si desidera la portata massima, nonchè la frequenza delle iniezioni corrispondente.

Per l'impostazione dei parametri operare nel seguente modo:

- A. Premere il pulsante 14 fino all'accensione del LED "Set 2", il display automaticamente visualizzerà la frequenza delle iniezioni precedentemente impostata (alla prima programmazione verrà visualizzata la frequenza memorizzata in sede di produzione);
- B. Tramite i tasti 3 e 10 impostare la frequenza di iniezioni (imp/min) corrispondenti alla portata massima desiderata;
- C. Premere il tasto "mA pulse" (5), sul display compare il valore precedentemente impostato;
- D. Tramite i tasti 3 e 10 impostare il valore in corrente "mA" a cui viene richiesta la portata massima desiderata;
- E. "Inviare" i dati agendo sul tasto 11. La pompa torna automaticamente in modalità "Meter" e a questo punto la pompa è operativa con le modalità secondo cui è stata impostata.

Funzione diretta

Le pompe vengono programmate in sede di produzione per una curva di funzionamento 4-20 mA diretta, quindi la pompa parte ogni qualvolta il segnale d'ingresso supera i 4 mA aumentando la frequenza delle iniezioni (e quindi la portata) proporzionalmente all'incremento del segnale; fino al massimo della frequenza delle iniezioni per segnali da 20 mA in poi.

Funzione inversa

Qualora si richieda una funzione inversa che all'aumento del valore del segnale in corrente faccia corrispondere una proporzionale riduzione della portata, sarà sufficiente inserire il valore massimo di mA in "Set 1" (in corrispondenza della portata minima) e il valore minimo in "Set 2" (in corrispondenza della portata massima).

ATTENZIONE: Lo schema di programmazione della pompa non consente l'impostazione di frequenze in "Set 2" di valore inferiore al valore di "Set 1", di conseguenza la funzione inversa può essere impostata esclusivamente attribuendo a "Set 1" il valore maggiore del segnale in corrente.

Esempio n° 1

POMPA DLX-CC, PORTATA 10 LT/H, PRESSIONE 5 BAR, SEGNALE 4-20 mA.

Segnale 4 mA: portata uguale al 0% = 0 l/h Segnale 12 mA: portata uguale al 50% = 5 l/h Segnale 20 mA: portata uguale al 100% = 10 l/h

Esempio n° 2: STESSA POMPA SEGNALE 4-20 mA (REGOLAZIONE INVERSA)

Segnale 4 mA: portata uguale al 100% = 10 l/hSegnale 12 mA: portata uguale al 50% = 5 l/hSegnale 20 mA: portata uguale al 0% = 0 l/h

6.7 COLLEGAMENTO DEGLI ACCESSORI AI CONNETTORI D'INGRESSO/USCITA

Come riportato nel paragrafo 3.2 i due connettori d'ingresso/uscita sono adibiti al collegamento della sonda di livello e all'ingresso mA.

E' molto importante, per motivi di sicurezza, togliere l'alimentazione alla pompa prima di collegare gli accessori esterni e proteggere con l'apposito connettore maschio, fornito in dotazione, gli ingressi/uscite non utilizzati in modo che non vi siano contatti accessibili dopo l'installazione.

Per quanto riguarda gli accessori collegati a tali ingressi/uscite è opportuno che essi siano forniti dal costruttore della pompa dosatrice per motivi di compatibilità e sicurezza e comunque che i relativi cavi di collegamento abbiano un isolamento compatibile con la tensione di alimentazione dell'apparecchiatura.

RIEPILOGO DEI COLLEGAMENTI

- 1. **INGRESSO SONDA DI LIVELLO**: I pin 3 e 4 del connettore in posizione 2 (vedi paragrafo 3.2) sono dedicati al collegamento della sonda di livello che in assenza di liquido collegherà insieme tali pin.
- 2. **INGRESSO mA**: I pin 3 e 4 del connettore in posizione 3 (vedi paragrafo 3.2) possono accettare un segnale di comando della pompa variabile da 0 a 20 mA con l'accortezza di collegare il positivo di tale segnale al pin n°1.

7.0 - INTERVENTI IN CASO DI GUASTI COMUNI ALLE POMPE SERIE DLX e DLX/B

7.1 - GUASTI MECCANICI

Data la robustezza del sistema, guasti meccanici veri e propri non se ne verificano. Talvolta possono verificarsi perdite di liquido da qualche raccordo o ghiera fissatubo allentati, o più semplicemente dalla rottura del tubetto di mandata. Raramente eventuali perdite potrebbero essere determinate dalla rottura della membrana o dall'u sura della guarnizione di tenuta della membrana stessa. Questi componenti in tal caso vanno sostituiti smontando le quattro viti del corpo pompa (Fig. 12), rimontando tali viti, serrarle in modo uniforme. Una volta eliminata la perdita, occorre pulire la pompa dosatrice da eventuali residui di additivo che ristagnando potrebbero aggredire chimicamente la cassa della pompa.

• LA POMPA DOSATRICE DA IMPULSI MA NON IMMETTE ADDITIVO NELL'IMPIANTO

- a. Smontare le valvole di aspirazione e mandata, pulirle e rimontarle nella stessa posizione (Fig. 12). Nel caso in cui si riscontrasse un rigonfiamento di dette valvole, verificare sull'apposita tabella la compatibilità dell'additivo con il tipo di valvola montata sulla pompa (valvola standard in Viton; su richiesta valvole a sfera).
- b. Verificare lo stato di intasamento del filtro.

Attenzione: Togliendo la pompa dosatrice dall'impianto agire con cautela nello sfilare il tubetto dal raccordo di mandata, in quanto potrebbe fuoriuscire l'additivo residuo contenuto nel tubetto. Anche in questo caso, se la cassa viene a contatto con l'additivo deve essere pulita.

7.2 - GUASTI ELETTRICI

1 NESSUN LED ACCESO, LA POMPA NON DA INIEZIONI.

Controllare che la pompa sia correttamente alimentata (presa di corrente e spina). Se la pompa rimane inattiva rivolgersi ai nostri Centri di Assistenza.

LED VERDE (POWER) ACCESO, LED ROSSO (PULSE) SPENTO, LA POMPA NON DA INIEZIONI.

Premere il pulsante START/STOP. Se la pompa rimane inattiva rivolgersi ai nostri Centri di Assistenza.

3 LA POMPA DA INIEZIONI IN MODO IRREGOLARE.

Controllare che il valore della tensione di alimentazione sia nei limiti della norma (+/-10%).

4 LA POMPA DOSATRICE DA UNA SOLA INIEZIONE.

Disinserire immediatamente l'apparecchiatura e rivolgersi ai nostri Centri di Assistenza.

29-32

INDEX

EXPLODED VIEWS

1.0 - HINTS AND WARNING 1.1 - WARNING 1.2 - SHIPPING AND TRANSPORTING THE PUMP 1.3 - PROPER USE OF THE PUMP 1.4 - RISKS 1.5 - TOXIC AND/OR DANGEROUS LIQUID DOSAGE 1.6 - ASSEMBLING AND DISMANTLING THE PUMP	PAG. 16 16 16 16 16 17
2.0 - DLX AND DLXB SERIES METERING PUMPS 2.1 - OPERATION 2.2 - TECHNICAL SPECIFICATIONS 2.3 - LIQUID ENDS MATERIALS	18 18 18 19
3.0 - INSTALLATION 3.1 - INJECTION VALVE INSTALLATION DIAGRAM 3.2 - WIRING CONNECTION AND OUTPUT CONNECTOR FUNCTIONS 3.3 - MANUAL STROKE LENGTH ADJUSTMENT	20 21 22 22
4.0 - MAINTENANCE 5.0 - HOW TO OPERATE WHEN DOSING SULPHURIC ACID	23
6.0 - MICROCONTROLLED DOSING PUMP DLX & DLX/B CC/M SERIES 6.1 - PUMP CONTROLS 6.2 - TYPICAL INSTALLATION 6.3 - ACCESSORIES 6.4 - LEVEL CONTROL 6.5 - CALIBRATION 6.6 - PARAMETERS SETTING MODE 6.7 - INPUT/OUTPUT EXTERNAL CONNECTIONS	24 24 24 24 25 25 25 26
7.0 - TROUBLE SHOOTING COMMON TO DLX - DLXB SERIES PUMPS 7.1 - MECHANICAL FAULTS 7.2 - ELECTRICAL FAULTS	27 27 27

1.0 - HINTS AND WARNINGS

Please read the warning notices given in this section very carefully, because they provide important information regarding safety in installation, use and maintenance of the pump.

- Keep this manual in a safe place, so that it will always be available for further consultation.
- The pump complies with EEC directives No.89/336 regarding "electromagnetic compatibility" and No.73/23 regarding "low voltages", as also the subsequent modification No.93/68.

N.B. The pump has been constructed in accordance with best practice. Both its life and it electrical and mechanical reliability will be enhanced if it is correctly used and subjected to regular maintenance.

1.1 - WARNING:

Any intervention or repair to the internal parts of the pump must be carried out by qualified and authorized personnel. The manufacturers decline all responsibility for the consequences of failure to respect this rule.

GUARANTEE: 1 year (the normal wearing parts are excluded, i.e.: valves, nipples, tube nuts, tubing, filter and injection valve). Improper use of the equipment invalidates the above guarantee. The guarantee is exfactory or authorized distributors.

1.2 - SHIPPING AND TRANSPORTING THE PUMP

The pump should always be moved in a vertical (and never in a horizontal) position. No matter what the means of transport employed, delivery of the pump, even when free to the purchaser's or the addressee's domicile, is always at the purchaser's risk. Claims for any missing materials must be made within 10 (ten) days of arrival, while claims for defective materials will be considered up to the 30th (thirtieth) day following receipt. Return of pumps or other materials to us or the authorized distributor must be agreed beforehand with the responsible personnel.

1.3 - PROPER USE OF THE PUMP

• The pump should be used only for the purpose for which it has been expressly designed, namely the dosing of liquid additives. Any different use is to be considered improper and therefore dangerous. The pump should not therefore be used for applications that were not allowed for in its design. In case of doubt, please contact our offices for further information about the characteristics of the pump and its proper use.

The manufactures cannot be held responsible for damage deriving from improper, erroneous or unreasonable use of the pump.

1.4 - RISKS

- After unpacking the pump, make sure it is completely sound. In case of doubt, do not use the pump and contact qualified personnel. The packing materials (especially bags made of plastics, polystyrene, etc.) should be kept out of the reach of children: they constitute potential sources of danger.
- Before you connect the pump, make sure that the voltage ratings, etc., correspond to your particular power supply. You will find these values on the rating plate attached to the pump.
- The electrical installation to which the pump is connected must comply with the standards and good practice rule in force in the country under consideration.
- Use of electrical equipment always implies observance of some basic rules: In particular:
- 1 do not touch the equipment with wet or damp hands or feet;
- 2 do not operate the pump with bare feet (Example: swimming pool equipment);
- 3 do not leave the equipment exposed to the action of the atmospheric agents;
- 4 do not allow the pump to be used by children or unskilled individuals without supervision;
- In case of breakdown or improper functioning of the pump, switch off, but do not touch. Contact our technical assistance for any necessary repairs and insist on the use of original spares. Failure to respect this condition could render the pump unsafe for use.
- When you decide to make no further use of an installed pump, make sure to disconnect it from the power supply.

Before carrying out any service on the item, check:

- 1. Disconnect the pins from the mains or by means of a two poles switch with 3 mm minimum distance between the contacts. (Fig. 4).
- 2. Relieve all the pressure from the pump head and injection tube.
- 3. Drain or flush all dosing liquid from the pump head. This operation can also be done with the pump disconnected from the plant by turning the pump upside-down for 15 to 30 seconds and without connecting the tubing to the nipples: if this operation is not possible, dismount and remount the pump head using the four mounting screws (Fig. 12).

In event of possible losses in the hydraulic system of the pump (breakage of the "O" ring gasket, the valves or the hoses) the pump should immediately be brought to a stop, emptying and depressurizing the delivery hose while taking all due safety precautions (gloves, goggles, overalls, etc.).

1.5 - TOXIC AND/OR DANGEROUS LIQUID DOSAGE

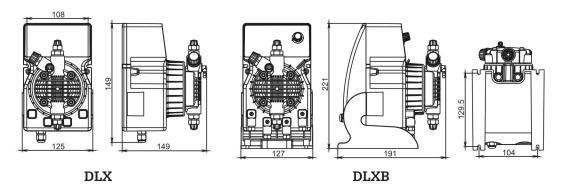
To avoid risk from contact with the hazardous liquids or toxic fumes, always adhere to the notes in this instruction manual:

- Follow the instructions of the dosing liquid manufacturer.
- Check the hydraulic part of the pump and use it only if it is in perfect condition.
- Use only the correct materials for the tubing, valves and seals to suit the liquid to be dosed; where possible shield the tubing with PVC conduit.
- Before disconnecting the metering pump, make sure to flush out and neutralize the pump head with the proper reagent liquid.

1.6 - ASSEMBLING AND DISMANTLING THE PUMP

1.6.1 - ASSEMBLY

All metering pumps are normally supplied fully assembled. For greater clarity, please consult the exploded view of the pump appended at the end of the manual, which shows all the pump details and a complete overview of all the pump components. These drawings are in any case quite indispensable whenever defective parts have to be re-ordered. For the same purpose, the appendix also contains other drawings showing the hydraulic parts (pump head and valves).


1.6.2 - DISMANTLEMENT

Proceed as follows before you dismantle the pump or before performing any other operation on it:

- 1. Disconnect the pins from the mains or by means of a two poles switch with 3 mm minimum distance between the contacts. (Fig. 4).
- 2. Relieve all the pressure from the pump head and injection tube.
- 3. Drain or flush all dosing liquid from the pump head. This operation can also be done with the pump disconnected from the plant by turning the pump upside-down for 15 to 30 seconds and without connecting the tubing to the nipples: if this operation is not possible, dismount and remount the pump head using the four mounting screws. (Fig. 12).

This operation calls for special attention, and you should therefore consult the drawings in Appendix and Chapter 1.4 "Risks" before you commence work.

OVERALL DIMENSIONS (Fig. 1)

2.0 - DLX AND DLXB SERIES METERING PUMPS

2.1 - OPERATION

The metering pump is activated by a teflon diaphragm mounted on a piston of an electromagnet.

When the piston of the electromagnet is attracted, a pressure is produced in the pump body with an expulsion of liquid from the discharge valve. Once the electric impulse is finished a spring brings the piston back to the initial position, with a recall of liquid through the suction valve.

The operation is simple the pump does not need lubrication, therefore maintenance is reduced almost to zero. The materials used for the construction of the pump make it particularly suitable for aggressive liquids.

The metering pump has been designed to feed liquids with capacities from 0 to 20 l/h and pressures from 0 to 15 bar (depending on the model selected).

2.2 - TECHNICAL SPECIFICATIONS

- The products are manufactured according
 ← regulation.
- Environmental Conditions: IP 65 protection, altitude up to 2000m, ambient temperature 5C to 40C, maximum relative humidity 80% for temperatures up to 31 C decreasing linearly to 50% relative humidity at 40 C.
- Pollution degree 2
- · Overvoltage cat. II
- Antiacid plastic casing.
- Control panel protection assured by an adhesive polyester film, weatherproof and resisting UV ray
- Standard power supply (fluctuations not to exceed $\pm 10\%$): 230 V a.c.50 Hz single phase.
- Optional power supply (fluctuations not to exceed $\pm 10\%$): 240 V a.c.50-60 Hz single phase;
 - 110 V a.c. 50-60 Hz single phase.
- · Connections for level probe and mA input signal.
- Upon request: manual stroke length adjustment. This control provides accurate flow adjustment. (only DLXB series)

OPERATING FUNCTIONS:

Manual The pump can be programmed to operate manually from 0 to 120 pulses per minute.

mA The pump doses in proportional way to the power signal.

Operating range: 0 – 20 mA pulses per minute 0-120 pump pulses per minute

2.3 - LIQUID ENDS MATERIALS

- DIAPHRAGM: PTFE
- PUMP HEAD: Polypropylene; upon request: PVC, 316 Stainless Steel, PTFE, PVDF.
- NIPPLES: polypropylene
- FILTER: polypropylene
- INJECTION NIPPLE: polypropylene
- SUCTION HOSE: PVC flexible
- **DISCHARGE HOSE**: polyethylene
- VALVES: "lip" type FPM (Viton*) upon request available in EPDM (Dutral*), NBR, Silycon.
- "Ball Check" VALVES upon request type in SS 316 and Glass PYREX. Available with Spring Return and "KALREZ" Valve.
- SEALS: FPM (Viton®) upon request EPDM (Dutral®), NBR, Silycon, PTFE only for ball checks valves

MAIN FEATURES

Tipo Type	Portata max Max flow	Pressione max Max press	Max imp./min. Max imp./min.	Dosaggio per imp. Output per stroke	Corsa Stroke	Altez. aspiraz. Suction height	Aliment. elettr. standard Standard power supply	Potenza ass. Power consum.	Corrente ass. Current consum.	Peso netto Net weight
	l/h	bar		ml	mm	m	Volts - Hz	Watts	Ampere	kg
1-15	1	15	120	0.14	0.80	2.0	230 V 50 - 60 Hz	37	0.16	2.3
2-10	1	10	120	0.28	0.80	2.0	230 V 50 - 60 Hz	37	0.16	2.3
5-7	5	7	120	0.70	1.00	2.0	230 V 50 - 60 Hz	37	0.16	2.3
5-12	5	12	120	0,70	1.00	2.0	230 V 50 - 60 Hz	58	0.25	2.9
8-10	8	10	120	1.11	1.40	2.0	230 V 50 - 60 Hz	58	0.25	2.9
15-4	15	4	120	2.08	2.20	2.0	230 V 50 - 60 Hz	58	0.25	2.9
20-3	20	3	120	2.60	2.20	2.0	230 V 50 - 60 Hz	58	0.25	2.9
2-20	2	20	120	0.28	1.00	2.0	230 V 50 - 60 Hz	58	0.25	2.9

Fig. 2

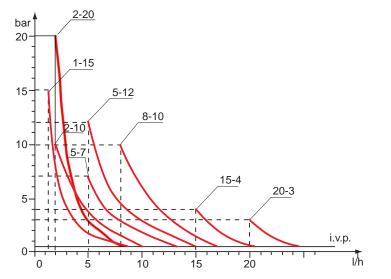


Fig. 3

The diagrams of fig. 3 indicate max metering pump flow variation in relation to the working pressure in the plant; the diagrams also include injection valve losses. I.V.P.

Due to production requirements the technical characteristics of our equipment at maximum ratings can vary with a tolerance of 5% which must be taken into account when choosing the type of pump.

- a. Install the pump in a dry place and well away from sources of heat and, in any case, at environmental temperatures not exceeding 40°C. The minimum operating temperature depends on the liquid to be pumped, bearing in mind that it must always remain in a liquid state.
- b. Carefully observe the regulations in force in the various countries as regards electrical installations (Fig.4). When the supply cable is devoid of a plug, the equipment should be connected to the supply mains by means of a two-poles switch having a minimum distance of 3 mm between the contacts. Before accessing any of the electrical parts, make sure that all the supply circuits are open.

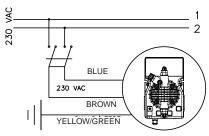


Fig. 4

c.- Locate the pump as shown in fig. 5 bearing in mind that it may be installed either below or above the level of the liquid to be dosed, though the level difference should not exceed 2 meters. When the process plant in which the pump is installed is operating at atmospheric pressure (no back pressure) and the chemical tank is situated above the plant (Fig. 6), the condition of the injection valve should be checked at regular intervals, because excessive wear and tear could cause additive to drip into the plant even when the pump is shut down. If the problem persist, install a properly calibrate counter-pressure valve (C) between injection point and the valve. In the case of liquids that generate aggressive vapours, do not install the pump above the storage tank unless the latter is hermetically sealed.

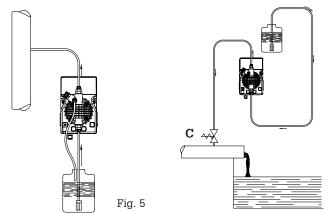


Fig. 6

d. - The discharge nipple will always remain in the upper part of the pump. The suction nipple, which serves to attach the hose (with filter) leading into the chemical tank, will therefore always be situated in the lower part of the pump.

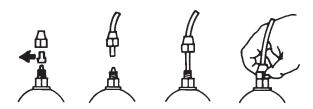


Fig. 7

e. - Remove the protection caps from the two nipples, slide the hoses over the connectors, pushing them right home, and then fix them with appropriate tube nuts. (Fig. 7).

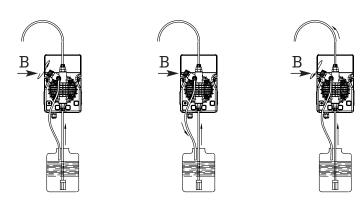
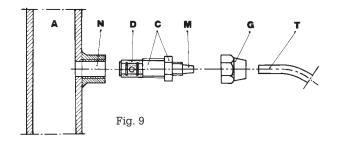


Fig. 8


Whenever the pump is dismantled from the pipework, you will be well advised to replace the caps on the connectors to avoid residual liquid being spilled. Before attaching the delivery hose to the plant, prime the metering pump by going through the sequence shown in Fig. 8. Before finalizing the installation of the discharge hose, make sure that the pump strokes will not cause it to move and bump into rigid bodies. In case of priming difficulties, use a normal syringe to suck liquid from the discharge nipple while the pump is in operation, continuing until you actually see the liquid rise in the syringe. Use a short length of suction hose to connect the syringe to the discharge nipple. In case of a pump equipped with an air bleed valve, unscrew the air relief valve B up to all the air in the pump head will be out.

- f. Try to keep both the suction and discharge hose as straight as possible, avoiding all unnecessary bends.
- g. Select the most appropriate injection point on a pipe of the plant to be treated and there fit a 3/8" female gas thread connector (similar to BSPm). This connector is not supplied with the pump. Screw the injection valve to the gas connector, inserting a gasket as shown in Fig. 9. Then connect the discharge hose to the conical connector on the injection valve and fix it with the supplied tube nut G. The injection valve also acts as no return valve by means of a cylinder sleeve (elastomer, standard supplied in Viton).

N.B. The sleeve D must not be removed.

3.1 - INJECTION VALVE INSTALLATION DIAGRAM Fig. 9

- A Pipework
- C Injection valve
- **M** Conical connector for attaching the discharge hose
- N 3/8" female steel gas thread connector
- G Hose tube nut
- T Polyethylene hose
- D Cylinder sleeve (no return valve)

3.2 - WIRING CONNECTION AND OUTPUT CONNECTOR FUNCTIONS

Female service connector wire assembly	Functions and technical informations
BLU To level probe POS. 2	Level probe connection Configuration: Pin 1 = No connection " 2 = No connection " 3 = Level probe wire " 4 = Level probe wire
Input mA signal POS. 3	Input mA signal connection Configuration: Pin 1 = No connection " 2 = No connection " 3 = (+) mA signal wire " 4 = (-) mA signal wire

3.3 - MANUAL STROKE LENGTH ADJUSTMENT - (upon request only for DLXB)

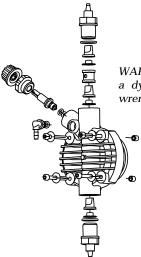

- press and turn the knob (1) up to the stroke length adjustement required.

Fig. 11

4.0 - MAINTENANCE

- 1. Periodically check the chemical tank level to avoid the pump operating without liquid. This would not damage the pump, but may damage the process plant due to lack of chemicals.
- 2. Check the pump operating condition at least every 6 months, pump head position, screws, bolts and seals; check more frequently where aggressive chemicals are pumped, especially:
 - pulse and power L.E.D.;
 - the additive concentration in the pipework; a reduction of this concentration could be caused by the wearing of the valves, in which case they need to be replaced (Fig. 12) or by the clogging of the filter which then has to be cleaned as in point 3 here below.

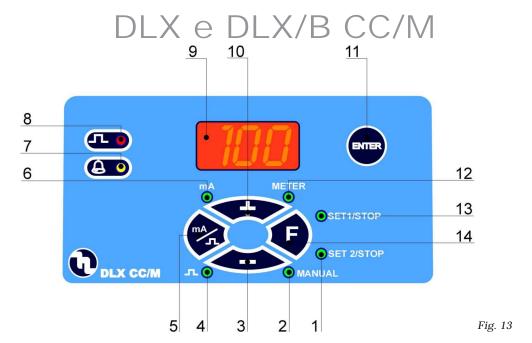
WARNING: to tightening the four screws, use a dynamometric screw driver, set the torque wrench to $1.8N\ x$ m.

Fig. 12

3. The Company suggests periodically cleaning off the hydraulic parts (valves and filter). We cannot say how often this cleaning should be done as it depends on the type of application, we also cannot suggest what cleaning agent to use as this will depend on the additive used.

Operating suggestions when dosing sodium hypochlorite (most frequent case):

- **a** disconnect the pins from the mains or by means of a onnipolar switch with 3 mm minimum distance between the contact.
- **b** disconnect discharge hose from pipework;
- c remove the suction hose (with filter) from the tank and dip it into clean water;
- **d** switch on the metering pump and let it operate with water for 5 to 10 minutes;
- e switch OFF the pump, dip the filter into a hydrochloric acid solution and wait until the acid finishes cleaning;
- f switch ON the pump again and operate it with hydrochloric acid for 5 minutes in a closed-circuit, with suction and discharge hose dipped into the same tank;
- **g** repeat the operation with water;
- **h** re-connect the metering pump to the pipework.


5.0 - HOW TO OPERATE WHEN DOSING SULPHURIC ACID (MAX 50%)

In this case it is essential to bear in mind the following:

- 1. replace PVC crystal suction hose with polyethilene discharge hose;
- **2.** empty any residual water from the pump head beforehand.

Warning: if the water mixes with sulphuric acid it can produce a large quantity of gas with consequent overheating of the area causing damage to valves and pump head.

This operation can also be done with the pump disconnected from the plant by turning the pump upside-down for 15 to 30 seconds and without connecting the hose to the nipples; if impossible, dismount and remount the pump head (Fig. 12) using the four mounting screws.

6.0 - MICROCONTROLLED DOSING PUMPS DLX & DLX/B CC/M SERIES

The DLX CC/M dosing pump is a microcontrolled unit suitable for operation in proportion to a "mA" input signal. Connected to a transmitter/indicator instrument or other device which supplies a modulated current signal from 0 to 20 mA, the pump pulse frequency will be proportional to the mA signal received: higher the signal higher the pump flow.

6.1 - PUMP CONTROLS (Fig. 13)

- 1 "green" LED SET POINT 2 function/stand by
- 2 "green" LED MANUAL function
- 3 Decreasing values button
- 4 "green" LED stroke
- 5 Functions selector (mA/manual pulse)
- 6 "green" LED mA
- 7 "yellow" LED level probe alarm
- 8 "red" LED injection pulse flashing
- 9 7 segment display
- 10 Increasing values button
- 11 Enter button
- 12 "green" LED METER function
- 13 "green" LED SET POINT 1 function/stand by
- 14 Function selection button

6.2 - TYPICAL INSTALLATION (Fig. 14)

- A Injection valve
- B Power supply
- C Filter
- D Level probe
- I Chemical tank
- S Process tank

6.3 - ACCESSORIES

- 1 flexible PVC suction hose transparent crystal type, lenght 2m;
- 1 semirigid polyethylene hose, white, lenght 2m;
- 1 injection valve 3/8 BSP m;
- 1 filter:
- 1 instruction/operating booklet

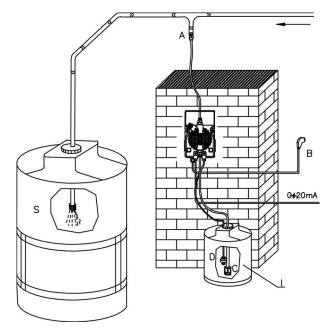


Fig. 14

6.4 - LEVEL CONTROL (UPON REQUEST)

If the dosing pump is supplied with level control setting and upon request floating level switch. When the level of the additive is lower than the switch, level alarm goes ON, the display will show "FAO", the pump is off giving an optical and sound alarm. The level control alarm goes ON with 5 seconds delay.

6.5 - CALIBRATION

Turning on the pump, the instrument switches automatically to the "METER" function.

Pressing button mA pulse (5) will show the actual mA input signal. To go back to strokes/min press again. The manual function is also used when priming the pump. In order to avoid programming and setting errors during the system functioning, the pump is programmed to automatically return to the Meter Mode each time the unit is switched OFF.

6.6 - PARAMETERS SETTING MODE (Fig. 13)

"Manual" Mode

Turn pump ON

- A. On the control panel press button F (14) and start manual mode: ("Manual" LED 2 ON)
- B. By means of button 10 (increase) and 3 (decrease), select the number of imp/min. To prime the pump set pulse rate at 75%.
- C. Prime the pump.

"Set 1" Mode

Mode Set 1 is used to select the mA input value/min. dosing pump flow and pulse frequency.

- A. Press button 14; Set 1, LED ON. The display will show the pulse frequency previously set.
- B. Select the minimum pump output required pressing buttons 3 and 10. If the minimum output is zero set 000.
- C. Press button 5 "mA" LED ON:
- D. By pressing buttons 3 and 10, you can select the mA input value corresponding to minimum pump output required. Confirm with enter 11. To finish the programming procedure and modify the maximum output value, press button 14 which will automatically change to mode Set 2.

· "Set 2" Mode

Mode Set 2 selects the mA input value/max. dosing pump flow and pulse/frequency.

- A. Press button 14 Set 2 LED ON, the display will show the frequency previously set.
- B. Press buttons 3 and 10 to set the desired imp/frequency at the maximum pump output required.
- C. Press button 5 "mA/pulse", the display will show the value previously set.
- D. Pressing 3 and 10 select the mA input value at the maximum pump output required.
- E. Press button 11 to enter. The pump will automatically return to "METER" mode and is operational according to the selected functioning mode; two modes are available: direct/reverse.

· Direct Functioning Mode

During production the pumps are programmed for a 4-20 mA direct functioning curve. The pump will start every time the mA signal goes above 4 mA increasing the pulse frequency (and consequently the flow) proportionally to the mA input signal up to maximum imp/min frequency available. E.G. Set 1 minimum signal 4 mA, minimum output. Set 2 maximum signal 20 mA, maximum output.

· Reverse Functioning Mode

Reverse functioning is when the mA signal increases and pump output proportionally decreases. Select the maximum mA signal required with mode Set 1 (in relation to the min. output).

E.G. Set 1 maximum signal 20 mA, minimum output.

Set 2 minimum signal 4 mA, maximum output.

WARNING: Reverse functioning can only be selected when mode Set 1 is always higher than the mA signal.

Example n° 1: PUMP MODEL DLX-CC, 10 L/H, 5 BAR, SIGNAL 4-20 mA.

Signal 4 mA = 0 l/h (0% pump flow rate)

Signal 12 mA = 5 l/h (50% pump flow rate)

Signal 20 mA = 10 l/h (100% pump flow rate)

Example n° 2: SAME MODEL, BUT WITH INVERSE SIGNAL: 20 - 4 mA

Signal 4 mA = 10 l/h (100% pump flow rate)

Signal 12 mA = 5 l/h (50% pump flow rate)

Signal 20 mA = 0 l/h (0% pump flow rate

6.7 INPUT/OUTPUT EXTERNAL CONNECTIONS (FOR EXTERNAL ACCESSORY)

As shows on paragraph 3.2 the two connectors are used for connecting the level control switch and the mA input signal.

It is very important to disconnect the power from the pump when connecting the accessories. It is also very important to protect the unutilized connectors with male connectors supplied with the pump.

Such operation will protect the internal circuitry from unwanted shorts and/or the power surge either from the operator or from different sources. There will be no accessible contacts after installation is completed.

It is imperative that the accessories will be supplied by the factory to avoid unwanted mismatched situations and/or furthed possible damage (wich in this this case will be no covered by the warranty).

Further more cables and accessories must be idoneus and rated for the proper voltage and type of insulation.

SUMMARY OF TYPE OF CONNECTIONS

- 1. **INPUT LEVEL SWITCH**: as shown on paragraph 3.2 the pins #3-4 from position 2 are dedicated to the operation of the level sensor. Such operation is activated by a float containing one magnet if the liquid is below the position or completely absent the flow will slide down activating a reed switch.
- 2. **INPUT mA SIGNAL:** as shown on paragraph 3.2 to the pins #3-4 from position 3 can be applied one signal 0-20 mA. Keeping in mind to connect the positive to pin #1.

7.0 - TROUBLE-SHOOTING COMMON TO DLX - DLXB SERIES PUMPS

7.1 - MECHANICAL FAULTS

As the system is quite robust there are no apparent mechanical problems. Occasionally there might be a loss of liquid from the nipple because the tube nut has loosened, or more simply the discharge tubing-has broken. Very rarely there may be losses caused by the breakage of the membrane, or by the membrane seals in which case they have to be replaced by disassembling the four screws of the pump head fig. 12), when re-mounting the pump head ensure that the screws are replaced properly, along with "O" ring.

After repair, the metering pump will need to be cleaned of additive residues which can damage the pump casing.

1 - THE METERING PUMP GIVES PULSES BUT THE ADDITIVE IS NOT INJECTED

- **a.** Dismount the suction and discharge valves, clean them and replace, see position (fig. 12). Should the valves be swollen, check valves material against our chemical resistance compatibility chart and fit correct valves. Standard valves are Viton. Upon request Silicon, EPDM (Dutral), Nitryl and valves, ball check valve, K valve can be supplied.
- b. Check clogging of the filter.

ATTENTION: When removing the metering pump from the plant, be careful as there might be some residual additive in the discharge hose.

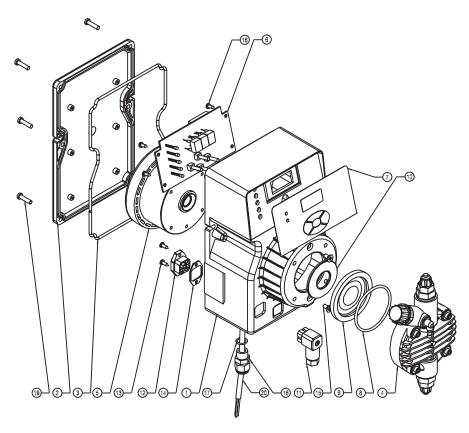
7.2 - ELECTRICAL FAULTS

1 ALL LEDS OFF, THE PUMP DOES NOT PULSE

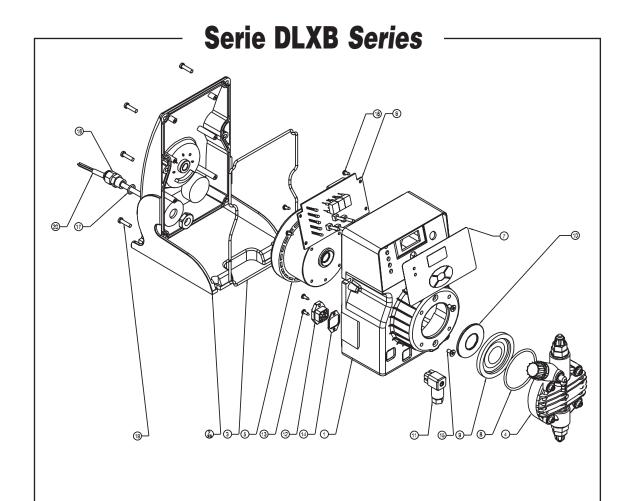
Check power supply (socket, plug, power switch ON), if the pump doesn't work contact manufacturer Customer Service, Dealer or Distributor.

GREEN LED (POWER) ON, RED LED (PULSE) OFF, THE PUMP DOES NOT PULSE

Press the START button. If the pump doesn't work contact manufacturer Customer Service, Dealer or Distributor


3 PUMP PULSES ARE NOT CONSTANT

Check that supply voltage is within +/- 10% of rated voltage.


4 THE DOSING PUMP GIVES ONLY ONE PULSE

Disconnect the equipment and contact manufacturer Customer Service, Dealer or Distributor.

Serie DLX Series

POS.	ELENCO DEI PARTICOLARI	SPARE PARTS LIST
1	CASSA	CASING
2	COPERCHIO POSTERIORE	BACK COVER
2 BIS	COPERCHIO POSTERIORE - BASAMENTO	BACK COVER - BASEMENT
3	GUARNIZIONE COPERCHIO POSTERIORE	BACK COVER GASKET
4	CORPO POMPA	PUMP HEAD
5	ELETTROMAGNETE	ELECTROMAGNET
6	SCHEDA ELETTRONICA	PC BOARD
7	PELLICOLA SERIGRAFATA PANNELLO COMANDI	CONTROL PANEL SERIGRAPHY FILM
8	O - RING DI TENUTA CORPO POMPA	PUMP HEAD O - RING
9	DIAFRAMMA IN PTFE	PTFE DIAPHRAGM
10	FLANGIA	FLANGE
11	CONNETTORE SERVIZI (FEMMINA)	OUTPUT CONNECTOR (FEMALE)
12	CONNETTORE SERVIZI (MASCHIO)	OUTPUT CONNECTOR (MALE)
13	FISSAGGIO CONNETTORE 2.9X9.5	2.9X9.5 CONNECTOR SCREW
14	GUARNIZIONE DI TENUTA CONNETTORE	CONNECTOR GASKET
15	VITE FISSAGGIO ELETTROMAGNETE M4X8	M4X8 ELECTROMAGNET SCREW
16	PRESSACAVO DI ALIMENTAZIONE	CABLE CLAMP
17	O-RING DI TENUTA PRESSACAVO	CABLE CLAMP O-RING
18	VITE DI FISSAGGIO SCHEDA ELETTRONICA 2.9X9.5	2.9X9.5 PC BOARD SCREW
19	VITE DI FISSAGGIO COPERCHIO POSTERIORE 4X16TX	4X16TX BACK COVER SCREW
20	CAVO DI ALIMENTAZIONE	POWER CABLE

POS.	ELENCO DEI PARTICOLARI	SPARE PARTS LIST
1	CASSA	CASING
2	COPERCHIO POSTERIORE	BACK COVER
2 BIS	COPERCHIO POSTERIORE - BASAMENTO	BACK COVER - BASEMENT
3	GUARNIZIONE COPERCHIO POSTERIORE	BACK COVER GASKET
4	CORPO POMPA	PUMP HEAD
5	ELETTROMAGNETE	ELECTROMAGNET
6	SCHEDA ELETTRONICA	PC BOARD
7	PELLICOLA SERIGRAFATA PANNELLO COMANDI	CONTROL PANEL SERIGRAPHY FILM
8	O - RING DI TENUTA CORPO POMPA	PUMP HEAD O - RING
9	DIAFRAMMA IN PTFE	PTFE DIAPHRAGM
10	FLANGIA	FLANGE
11	CONNETTORE SERVIZI (FEMMINA)	OUTPUT CONNECTOR (FEMALE)
12	CONNETTORE SERVIZI (MASCHIO)	OUTPUT CONNECTOR (MALE)
13	FISSAGGIO CONNETTORE 2.9X9.5	2.9X9.5 CONNECTOR SCREW
14	GUARNIZIONE DI TENUTA CONNETTORE	CONNECTOR GASKET
15	VITE FISSAGGIO ELETTROMAGNETE M4X8	M4X8 ELECTROMAGNET SCREW
16	PRESSACAVO DI ALIMENTAZIONE	CABLE CLAMP
17	O-RING DI TENUTA PRESSACAVO	CABLE CLAMP O-RING
18	VITE DI FISSAGGIO SCHEDA ELETTRONICA 2.9X9.5	2.9X9.5 PC BOARD SCREW
19	VITE DI FISSAGGIO COPERCHIO POSTERIORE 4X16TX	4X16TX BACK COVER SCREW
20	CAVO DI ALIMENTAZIONE	POWER CABLE

VALVOLE - VALVES

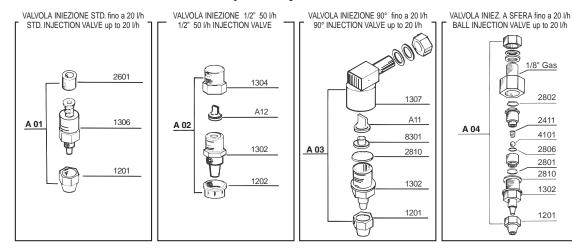
Valvole di iniezione complete di raccordo Complete injection valves

1/8" Gas

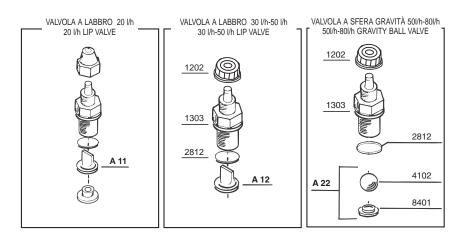
2802

2411

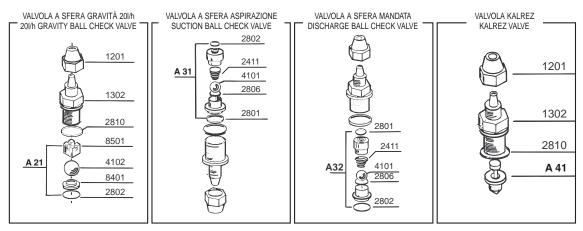
4101


2806

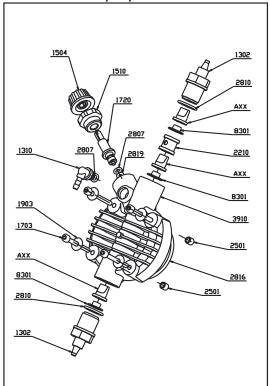
2801

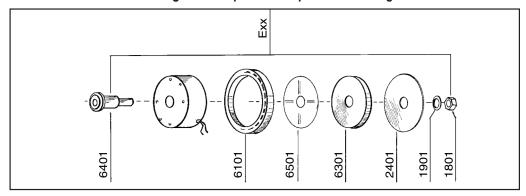

2810

1302

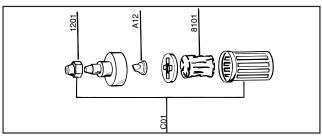

1201

Valvole a labbro - Lip valves


Valvole speciali - Special valves


Corpo pompa completo: P.P. - PVC - Acciaio inox - PTFE Complete Pump Head: P.P. - PVC - Stainless Steel - PTFE

1201/1202 1302 2810/2812 Axx 8301 1703 2501 1903 2813÷2818 **Bxx** 3900÷3907 Axx 8301 2810/2812 1302 1201/1202


Corpo pompa con spurgo manuale Manual air bleed pump head

Elettromagnete Completo - Complete Electromagnet

Filtro Std fino a 20 l/h - Std Filter up to 20 l/h

Note:		

Note:		

Note:		